NMR Studies on Reorientational Motion of Hydrated D₂O Molecules in Tetraalkylammonium Bromide Dilute Aqueous Solutions

Akio Shimizu and Yoshihiro Taniguchi*
Department of Chemistry, Faculty of Science and Engineering, Ritsumeikan University, Kita-ku, Kyoto 603
(Received June 21, 1990)

The spin-lattice relaxation times of D and 17 O nuclei of hydrated D₂O molecules in tetraalkylammonium bromide (Me₄NBr, Et₄NBr, Pr₄NBr, and Bu₄NBr) dilute aqueous solutions in the concentration range of 0.2 to 1.0 mol kg⁻¹ at 25 °C were measured by NMR spectroscopy. The relaxation rates of D and 17 O nuclei varied linearly with increasing the concentration below 1.0 mol kg⁻¹. The dynamic hydration number, B_X^+ , is defined by $B_X^+=(k\cdot\tau_X^+/\tau_0^2-1)n_X^+/50.0$, where τ_X^+ and τ_0^0 (X=D or 17 O) are the reorientational correlation times of hydrated D₂O molecules (n_X^+) in R₄N⁺ (R: alkyl group) and pure D₂O molecule. The B_X^+ increases with increasing the alkyl chain length of R₄N⁺ ions. The abnormally large B_X^+ values, compared with those of alkali metal ions, are caused by the hydrophobic hydration around the alkyl group of the R₄N⁺ ion. The reorientational motion of a hydrated D₂O molecule in the hydration sphere of R₄N⁺ ions is isotropic, though the motion of a D₂O molecule in the ionic hydration of alkali metal ions is anisotropic.

Symmetrical tetraalkylammonium salts are interesting 1:1 electrolytes whose properties include a tetrahedral simple sphere of cations, the availability of a series of cations with different alkyl chain lengths, and high solubilities in water. The salts are also hydrated in aqueous solution and form clathrate Such interesting molecular and physical properities of these salts in water have attracted much attention of physical chemists.1) Frank and Evans2) proposed a theory of iceberg formation around the hydrocarbon groups of these ions in water, i.e., A detail X-ray structure hydrophobic hydration. analysis of the clathrate hydrates3) is useful to understand the different thermodynamic properties of the tetraalkylammonium salts from the inorganic electrolyte solutions from the viewpoint of hydrophobic hydration.

From a study of the concentration dependence on the apparent molal volumes of salts in dilute solution up to 1 M (1 M=1 mol dm⁻³), the molal volume deriates from the Debye-Hückel limiting slope with increasing concentration.4,5) For Me₄NBr the slope is slightly positive and becomes more negative upon increasing the alkyl chain length of the tetraalkylammonium salts from Et₄NBr to Bu₄NBr. This is explained by a balancing of two opposite effects: the hydrophobic effect of the alkyl groups and the charge effect of ions. The charge effect trends to increase the apparent molal volume against the square root of the concentration, while the hydrophobic effect decreases it. molecules in the vicinity of the Me₄N+ ion are predominantly influenced by the charge effect, which is weakened for the Et₄N⁺ ion and becomes negligible for the Bu₄N⁺ ion. A number of data regarding the partial molal volume⁶⁻⁸⁾ and apparent molal adiabatic compressibilities9,10) suggest that the structure-making effect of tetraalkylammonium ions is enhanced upon increasing the carbon number of the alkyl groups. Furthermore, Key et al.^{11,12)} have made a systematic investigation of the viscosities and conductances of tetraalkylammonium salt solutions and have determined the *B* coefficients and the limiting Walden products from them. Pr₄N⁺ and Bu₄N⁺ ions form a hydrogenbonding network structure among water molecules in their vicinity, and behave as structure-making ions. The Me₄N⁺ ion has a structure-breaking properties and the Et₄N⁺ ion has a mixed behavior regarding structure-making and structure-breaking effects.

The dynamic aspect of D₂O molecules of R₄NBr solutions up to 6 mol kg-1 was studied by Hertz et al. 13) using the NMR method. They observed that the reorientation time of D₂O molecules becomes longer upon passing from Me₄N+ to Pr₄N+ ions. It has been clarified that the reorientational time of a D2O molecule in a Pr₄NBr solution is longer than that in a Bu₄NBr solution at high salt concentrations above 1.0 mol kg⁻¹. This conclusion is inconsistent with those derived from thermodynamic and transport This discrepancy may be due to the determination of the reorientation time of infinitly isolated complexes from the extrapolation of high salt concentrations. It is thus necessary to undertake precise NMR measurements of D2O molecules in a tetraalkylammonium salt dilute solution below 1 mol kg⁻¹.

In the present study we focused on the dynamic properties of the hydrophobic hydration in R₄NBr (R=Me, Et, Pr, and Bu) aqueous solutions are measured the concentration dependence of D and ¹⁷O spin-lattice relaxation of D₂O molecules below 1.0 mol kg⁻¹. Comparing the D relaxation rate with that of the ¹⁷O nucleus on the basis of the two-state model, we can discuss the dynamic behavior of a hydrated D₂O molecule, and the difference between the hydrophobic hydration of tetraalkylammonium ions as well as the hydration of alkali metal ions.

Experimental

Samples. R₄NBr (R=Me, Et, Pr, and Bu) salts from Nakarai Tesque, Inc. (extra pure grade) were recrystallized from water or ethanol. D₂O was obtained from CEA,

containing over 99.8% (d). Sample solutions were passed through membrane filters with a pore size $0.1 \mu m$ to remove dust. Sample solutions were bubbled with nitrogen gas for about five minutes just before NMR measurements to remove any oxygen gas.

NMR Measurement. All D and ¹⁷O relaxation times were obtained on a JEOL GX-270 pulsed spectrometer operating at 41.5 and 36.6 MHz, respepctively. Samples were kept in a 10 mm diameter glass tube. The resolution was established by the D nucleus of neat D2O before the sample measurement. The spin-lattice relaxation times (T_1) were measured by the inversion-recovery method, using a pulse sequence of $180^{\circ}-t-90^{\circ}$ pulses. The T_1 values were determined for each sample at 16 different time intervals (t) and the pulse delay time (PD) was more than $10T_1$. The spectral widths were 1200 Hz for the D nucleus and 60000 Hz for the 17O nucleus. The free induction decay of the D and 17O nuclei were accumulated 4 to 16 times and 100 to 3200 times, respectively, depending on the concentration. productibility of the T_1 measurements was within 2%. The temperature was controlled to 25±0.1°C by an air compressor.

Results and Discussion

Figures 1 and 2 show the concentration dependence of R_1/R_1^0 of D and $^{17}\mathrm{O}$ nuclei of D₂O molecules in R₄NBr with those of alkali metal bromides solutions at 25 °C.

The R_1/R_1^0 values vary linearly with increasing

concentration up to $1.0 \,\mathrm{mol \, kg^{-1}}$, similar to those alkali metal bromides. ¹⁴⁾ Their positive slopes for D and ¹⁷O nuclei are much steepper than those of Li and Na salts, and increase with increasing alkyl chain length of R₄NBr salts. The concentration dependence of R_1 of D and ¹⁷O nuclei is given by a linear equation below $1.0 \,\mathrm{mol \, kg^{-1}}$:

$$R_1 = (1 + B_X m) R_1^0$$
, $(X = D \text{ or } {}^{17}O)$ (1)

where R_1 and R_1^0 are the spin-lattice relaxation rates of the D₂O molecule at a concentration m of a R₄NBr solution and pure D₂O, respectively. The B_x^{\pm} , of a cation (+) and an anion (-) to B_x is determined by using the following equation and the previous method:¹⁴)

$$R_1 = \{1 + (B_X^+ + B_X^-)m\}R_1^0. \tag{2}$$

D and ¹⁷O nuclei are quadrupole nuclei with spin quantum numbers of I=1 and 5/2, respectively. These nuclei relax mainly be an electric quadrupole interaction. Under the experimental conditions of the motional narrowing limit $(2\pi\nu\tau\ll 1)$, where ν is the resonance frequency of this expepriment, the relation between the spin-lattice relaxation rate (R_1) and the rotational correlation time (τ) is given by the following equation: ¹⁵

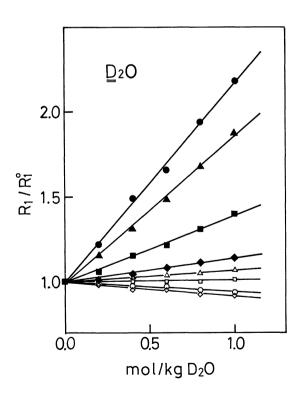


Fig. 1. Plots of D relaxation rates (R₁/R₀¹) of a D₂O molecule in tetraalkylammonium and alkali metala¹) bromide solutions at 25 °C.
★: Me₄NBr, ➡: Et₄NBr, ★: LiBr, □: NaBr, O: KBr, ♦: CsBr. a) Ref. 14.

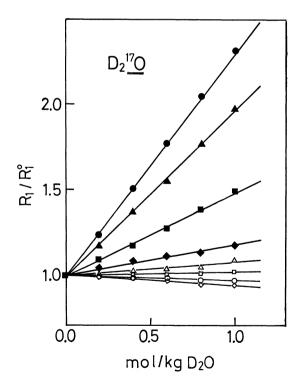


Fig. 2. Plots of ¹⁷O relaxation rates (R₁/R₁⁰) of a D₂O molecule in tetraalkylammonium and alkali metal^{a)} bromide solutions at 25 °C. ◆: Me₄NBr, ■: Et₄NBr, ▲: Pr₄NBr, Φ: Bu₄NBr, Δ: LiBr, □: NaBr, O: KBr, ◊: CsBr. a) Ref. 14.

$$R_1 = \frac{3}{40} \frac{2I+3}{I^2(2I-1)} \left(\frac{e^2 q Q}{\hbar}\right)^2 \left(1 + \frac{\eta^2}{3}\right) \tau. \tag{3}$$

Here, I, η , and e^2qQ/\hbar are the quantum number, the asymmetry parameter, and the quadrupole coupling constant, respectively. For a pure D₂O molecule $e^2qQ/\hbar = 254$ kHz and $\eta = 0.135^{16}$) are for a D nucleus, and $e^2qQ/\hbar = 8.1$ MHz and $\eta = 0.75^{16}$) are for an ¹⁷O nucleus. For a pure D₂O molecule τ_D^0 and τ_{TQ}^0 are 2.38 ps and 2.37 ps.

Since R_1 increases linearly with increasing concentration for all R_4NBr salts, it is reasonable that R_1 is the fractional average of the spin-lattice relaxation rates of bulk D_2O (R_1^0), an anion hydrated D_2O (R_1^-) and a cation hydrated (R_1^+) D_2O molecule given by the following equations:

$$R_1 = (1 - x^+ - x^-)R_1^0 + x^-R_1^- + x^+R_1^+$$
 (4)

and

$$x^{\pm} = n^{\pm} m/50.0$$
.

where R_1^0 , R_1^+ , R_1^- , n^+ , and n^- are the spin-lattice relaxation rates of pure water, hydrated water of the cation and anion, and the hydration numbers of the cation and anion, respectively.

From Eqs. 3 and 4, the following relations are obtained:

$$\frac{R_1}{R_1^0} = 1 + \left\{ n^+ (k^+ \cdot \frac{\tau_X^+}{\tau^0} - 1) + n^- (k^- \cdot \frac{\tau_X^-}{\tau^0} - 1) \right\} \frac{m}{50.0}$$
 (5)

and

$$k^{\pm} = \{ (e^2 q Q/\hbar)^{\pm} / (e^2 q Q/\hbar)^0 \}^2, \tag{6}$$

where τ^0 , $\tau_{\rm X}^+$, and $\tau_{\rm X}^-$, are the reorientation time of pure D₂O, and D₂O in the hydration sphere of a cation and an anion, respectively. Here, k=1 in the case of $(e^2qQ/\hbar)^+=(e^2qQ/\hbar)^0$ and $k=0.82^{17}$ in the case of $(e^2qQ/\hbar)^+=(e^2qQ/\hbar)^{\rm Li^+}$ or Na⁺. Finally, from Eqs. 2 and 5, we can obtain the following relation between $B_{\rm X}^\pm$ and $\tau_{\rm X}^\pm$:

$$B_{\rm X}^{\pm} = (k^{\pm} \cdot \frac{\tau_{\rm X}^{\pm}}{\tau_{\rm X}^{0}} - 1) \frac{n_{\rm X}^{\pm}}{50.0}.$$
 (7)

 $B_{\rm X}^{\pm}$ is related to the reorientation time, $\tau_{\rm X}^{\pm}$, and was

defined as the dynamic hydration number by Uedaira et al.^{18,19)}

 $B_{\rm X}^{\pm}$, $\tau_{\rm X}^{\pm}/\tau_0$ and $\tau_{\rm D}^{\pm}/\tau_{\rm NO}^{\pm}$ are shown in Table 1. The $B_{\rm X}^{+}$ values for D and ¹⁷O nuclei are of the order of

$$(C_s^+ < K^+ < 0 < N_a^+ < L_i^+)^{14} < Me_4N^+ < E_{t_4}N^+ < Pr_4N^+ < Bu_4N^+.$$

The relaxation rates of D and ¹⁷O nuclei of D₂O molecules over the whole concentration range of R₄NBr solutions increase with increasing alkyl chain length of the R₄N⁺ ion. These results are in contrast with those of Hertz et al. 13) Further, Hertz et al. reported that the self-diffusion coefficients20) of Bu₄N+ and Pr_4N^+ ions show the same behavior as R_1 .¹³⁾ Our results are reasonable for those of the thermodynamic and transport properties, which change as a linear function of the alkyl chain length of R₄NBr. We consider these differences between our experimental results and Hertz et al.¹³⁾ Our experiments were carried out at a lower concentration range, below 1.0 mol kg⁻¹, than those above 1.0 mol kg⁻¹ studied by Hertz et al.¹³⁾ Above 1.0 mol kg⁻¹ the curious behavior of the physical properties of the Bu₄N⁺ ion against the concentration has been reported. For example, the apparent molar volume of a Bu₄NBr solution shows a minima at about 1.0 M, and above 1.0 M makes a micell.4,21,22)

The dynamic hydration number as a function of the ionic crystal radius (r_c) is shown in Fig. 3. The curves of B_D^+ and B_{10}^+ vs. r_c plots for both D and 17O nuclei pass through minima at 200-250 pm. Alkali metal ions show a negative slope and R₄N⁺ ions have a positive one. The dependence of r_c on B_x^+ for the R₄N⁺ ion is larger than those of alkali metal ions. This tendency corresponds to the B coefficient of the solution viscosity vs. r_c plots. The absolute of four R₄N⁺ ions are larger than those of alkali metal ions. Since the Li+ ion has the smallest ionic radii among univalent cations and has the largest surface charge density, it is natural that hydrated D₂O molecules of Li+ ion are strongly electrostricted around the Li+ ion through a ion-water interaction and that the reorientational motion is mostly repressed among the alkali metal ions. Even if the surface charge density of the R₄N⁺ ion is smaller than that of alkali metal ions, the large B_x^+ values of hydrated D_2O molecules of R₄N+ ions are considered for the following reasons. One is due to the large number of

Table 1. Hydration Behaviors of Tetraalkylammonium Ion in Aqueous Solution at 25°C

	B_{D}^{+}	$B_{^{17}{ m O}}^{+}$	$n^{+^{\mathrm{a})}}$	$ au_{ m D}^+/ au_{ m D}^{ m 0~b)}$	$ au_{^{17}{ m O}}^+/ au_{^{17}{ m O}}^{0~{ m b})}$	$ au_{ m D}^+/ au_{ m D}^{ m 0~c)}$	$ au_{^{17}{ m O}}^{+}/ au_{^{17}{ m O}}^{^{0}}$	$ au_{ m D}^{+}/ au_{ m ^{17}O}^{+}$
Me ₄ N+	0.177	0.200	25	1.35	1.40	1.65	1.71	0.96
Et ₄ N+	0.432	0.498	30	1.72	1.83	2.10	2.23	0.93
Pr_4N^+	0.894	0.970	35	2.28	2.39	2.78	2.91	0.95
Bu_4N^+	1.22	1.32	40	2.52	2.65	3.08	3.24	0.95

a) Ref. 20. b) k=1. c) k=0.82.

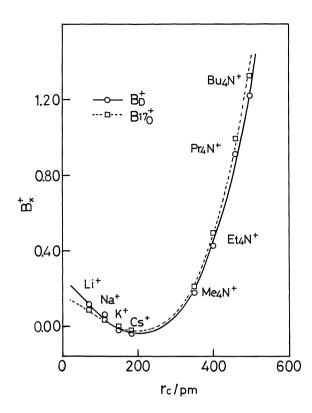


Fig. 3. Plots of the dynamic hydration number in R₄N⁺ and alkali metal³ ions as a function of their ionic radii. a) Ref. 14.

hydrated D₂O molecules of R₄N⁺ ions with increasing alkyl chain length, i.e., ionic radii. The other is hydrophobic hydration around the alkyl chain of R₄N⁺ ions, like the clathrate hydrate. These hydrated D₂O molecules are stabilized by the formation of a network structure through hydrogen bonding among D₂O molecules in the hydration sphere. The relative reorientation time of an individual hydrated D2O molecule, τ_X^+/τ_X^0 , is determined by using Eq 6 and known n^+ values. As shown in Table 1, it is clear that both the reorientation times of D and ¹⁷O nuclei of a hydrated D2O molecule for Me4N+ or Et4N+ ions are shorter than those of the Li⁺ ion $(\tau_D^+/\tau_D^0=1.98,$ $\tau_{170}^{+}/\tau_{0}^{0}=1.78$ for k=1, and $\tau_{D}^{+}/\tau_{D}^{0}=2.41$, $\tau_{170}^{+}/\tau_{0}^{0}=2.17$ for k=0.82), but that the reorientation times of a hvdrated D₂O molecule for Pr₄N⁺ and Bu₄N⁺ ions are longer than those of the Li+ ion. Therefore, the larger B_X^+ values of Me₄N⁺ or Et₄N⁺ ions than that of the Li⁺ ion are due to the large number of hydrated Me₄N⁺ and Et₄N⁺ ions. On the other hand, the reorientation time of a hydrated D2O molecule of Pr4N+ and Bu4N+ ions is essentialy longer than that of an electrostrictly hydrated D₂O molecule of the Li⁺ ion. Since R₄N⁺ ions have a smaller surface change density than does the Li⁺ ion, these large B_X^+ and τ_X^+/τ_X^0 values effectively strengthen D₂O-D₂O interactions.

Struis et al. determined the reorientation times of X nuclei, τ_X (X=D and 17 O), in pure water as a function

of the temperature over the range of -10 to $53 \,^{\circ}$ C. ¹⁶) The ratio of the reorientation times of a water molecule at a certain temperature, $\tau_{\rm X}^t$, to the reorientation time at $25 \,^{\circ}$ C, $\tau_{\rm X}^{25}$, (the relative reorientational time $\tau_{\rm X}^t/\tau_{\rm X}^{25}$) increases with decreasing temperature. Comparing the reorientation times of hydrated water molecules of R₄N⁺ ions with those of water molecules in bulk water at various temperatures, the reorientation times of Me₄N⁺, Et₄N⁺, Pr₄N⁺, and Bu₄N⁺ ions correspond to those of a water molecule at 14, 7, 0, $-2 \,^{\circ}$ C, for k=1, and 9, 3, -4, $-7 \,^{\circ}$ C for k=0.82, respectively. Especially, it is interesting that the reorientational motion of a hydrated water molecule of Pr₄N⁺ and Bu₄N⁺ ions corresponds to the motion of a pure water molecule below $0 \,^{\circ}$ C.

The reorientational motion of a quadrupole nuclei is related to the reorientational motion of the main component of the quadrupole interaction tensor. The main component of the ¹⁷O nucleus in a D₂O molecule lies along the perpendicular axis to the molecular plane and the D nucleus is almost along the O-D bond axis. From this point of view, we can estimate the anisotropic reorientational motion (τ_D^+/τ_{17O}^+) of a hydrated D₂O molecule in the hydration sphere. The $\tau_{\rm D}^+/\tau_{\rm irO}^+$ is 0.96, 0.93, 0.95, and 0.95, for Me₄N⁺, Et₄N⁺, Pr₄N⁺, and Bu₄N⁺ ions, respectively, as shown in Table 1. These results tell us that the reorientational motion of a hydrated D2O molecule in R4N+ ions is isotropic within experimental uncertainty, in spite of the fact that τ_X^+/τ_X^0 increases largely with increasing alkyl chain length.

In a previous report we reported that the anisotropy of the reorientational motion $(\tau_D^+/\tau_{n_O}^+)$ of hydrated water molecules in alkali metal ions is 1.12 and 1.13 for the positive hydration of Li⁺ and Na⁺ ions, and 0.89 and 0.92 for the negative hydration of K⁺ and Cs⁺ ions, respectively. The $\tau_D^+/\tau_{n_O}^+$ values of a hydrated water molecule of R_4 N⁺ ions exist between positive and negative hydration ions. The reorientational motion of pure water molecules is almost isotropic at temperatures between $-10\,^{\circ}$ C and $53\,^{\circ}$ C.¹⁶⁾ The dynamic structure of the hydrophobic hydration in R_4 N⁺ ions is like that of pure water, since the reorientational motion is slow and isotropic.

Finally, from both present and previous studies it has been clarified that there are three kinds of the dynamic hydration numbers: the positive hydration of Li⁺ and Na⁺ is $0 < B_{\nu_0}^+ < B_{\rm D}^+$, the negative hydration of K⁺ and Cs⁺ is $B_{\nu_0}^+ < B_{\nu_0}^+ < 0$, and the hydrophobic hydration of R_4N^+ is $0 < B_{\nu_0}^+ = B_{\rm D}^+$. The reorientation motion of a D₂O molecules in the hydrophobic hydration of R₄N⁺ ions is isotropic though anisotropic motion of the D₂O molecule in the ionic hydration of alkali metal ions.

References

- 1) W. Y. Wen, "Water and Aqueous Solutions, Structure, Thermodynamics and Transport Processes," by R. A. Horne, John Wiley, New York (1972).
- 2) H. S. Frank and M. W. Evans, J. Chem. Phys., 13, 50 (1945).
- 3) R. Mcmullan and G. A. Jeffreg, J. Chem. Phys., 31, 1231 (1959).
- 4) W. Y. Wen and S. Saito, J. Phys. Chem., 68, 2639 (1964).
- 5) W. Y. Wen and K. Nara, J. Phys. Chem., 71, 3907 (1967).
- 6) F. Frank and H. T. Smith, *Trans. Faraday Soc.*, **63**, 2586 (1967).
- 7) R. Zana and E. Yeager, J. Phys. Chem., 71, 521 (1967); ibid., 71, 4241 (1967).
- 8) B. E. Conway and L. H. Laliberte, J. Phys. Chem., 72, 1758 (1968).
- 9) B. E. Conway and R. E. Verrall, J. Phys. Chem., 70, 3952 (1966).
- 10) R. E. Verall and B. E. Conway, *J. Phys. Chem.*, **70**, 3961 (1966).

- 11) R. L. Kay, T. Vituccio, C. Zawoyski, and D. Evans, *J. Phys. Chem.*, **70**, 2336 (1966).
- 12) R. L. Kay and D. F. Evance, J. Phys. Chem., **69**, 4216 (1965); *ibid.*, **70**, 366 (1966); *ibid.*, **70**, 2323 (1966).
- 13) H. G. Hertz and M. D. Zeilder, *Ber. Bunsen-Ges. Phys. Chem.*, **68**, 821 (1964).
- 14) A. Shimizu and Y. Taniguchi, *Bull. Chem. Soc. Jpn.*, **63**, 1572 (1990).
- 15) A. Abragam, "The Principles of Nuclear Magnetism," Oxford University, Oxford (1967), p. 313.
- 16) R. P. W. J. Struis, J. de Bleijser, and J. C. Leyte, *J. Phys. Chem.*, **91**, 1639 (1987).
- 17) J. R. C. van der Maarel, D. Lankhorst, J. de Bleijser, and J. C. Leyte, *J. Phys. Chem.*, **90**, 1470 (1986).
- 18) H. Uedaira, M. Ikura, and H. Uedaira, *Bull. Chem. Soc. Jpn.*, **62**, 1 (1989).
- 19) M. Ishikawa and H. Uedaira, *Bull. Chem. Soc. Jpn.*, **63**, 1 (1990).
- 20) H. G. Hertz, B. Lindman, and V. Siepe, Ber. Bunsen-Ges. Phys. Chem., 73, 542 (1969).
- 21) H. E. Wirth, J. Phy. Chem., 71, 2922 (1967).
- 22) S. Lindenbaum and G. E. Boyd, J. Phys. Chem., **68**, 911 (1964).